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ABSTRACT 

Two basic theorems about the graphs of convex polytopes are that the graph of 
a d-polytope is d-connected and that it contains a refinement of the complete 
graph on d + 1 vertices. We obtain generalizations of these theorems, and 
others, for manifo!ds. We also supply some details for a proof of the lower 
bound inequality for manifolds. 

1. Introduction 

The advent of  linear programming has brought about a renewal of  interest in 

the combinatorial structure of  convex polytopes. In the past ten years many new 

theorems have been proved for these polytopes. It  is interesting that many of  them 

are also true for more general structures such as triangulated manifolds and 

pseudo-manifolds. 

In this paper  we shall generalize the following theorems to manifolds and 

pseudo-manifolds. 

(i) The graph of a d-polytope is d-connected ['3, p. 213]. 

(ii) Each vertex of  the graph of a d-polytope is contained in a refinement of  

Ca+l, the complete graph on d + 1 vertices I-3, p. 200]. 

(iii) (Klee [4].) I f  a set of  n vertices separates the graph of  a d-polytope, then 

the number of  components is 1 (if n < d - 1), is 2 (if n = d), and is less than or 

equal to the maximum number of  facets of  any d-polytope with n vertices for 

n > d + l .  
As an application of one of  our theorems, we shall prove the Lower Bound 

theorem for manifolds which states: 
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If  M is a d-manifold with v vertices, then M has at least dv - (d + 2) (d - 1) 

facets. 

This theorem was proved for polytopes in I l l ,  where we mention that it can 

be proved for manifolds although no proof is given. 

2. Definitions 

A d-cell complex is a collection cC of closed k-cells (called faces of ~ where 

- l < k < d  such that 

(i) the boundary of each k-cell is a (k - 1) cell complex. 

(ii) the intersection of any two faces ~ z  and ~'2 is a face of both ~-1 and ~-2 

(possibly the empty face). 

(iii) each face of c~ is a face of a d-cell of cr 

A simplicial d-cell complex is one in which the facial structure of each d-cell 

is isomorphic to the facial structure of the d-simplex. 

A d-manifold is a compact metric space that is locally homeomorphic to the 

d-cell. A triangulated d-manifold is one that is the union of the faces of some 

simplicial d-cell complex. 

A d-pseudo manifold .t[, is a simplicial d-complex that satisfies the following 

conditions. 

(i) Each ( d -  1) face belongs to exactly two d-faces. 

(ii) ./1 is strongly connected, that is, given any two d-simplices $1 and Sn in ./// 

there is a sequence St, $2, "", S, of simplices such that St and St_ 1 intersect on a 

(d - 1) simplex. (Such a sequence of facets will be called a strong chain.) 

Every triangulated manifold is a pseudo-manifold but the converse is not true. 

A cellular decomposition of a d-manifold is a d-manifold that is the union of the 

faces of a d-cell complex. 

A vertex of a cell complex is a face of dimension 0, an edge is a 1-dimensional 

face. A facet of a d-cell complex is a d-face and a subfacet is a (d - 1)-face. The 

graph of a d-cell complex is the linear graph formed by its vertices and edges. 

The body of a cell complex ~, denoted by I cr I is the union of its faces of cr 

A cell complex cg is a refinement of a cell complex cg, if there is a homeomorphism 

of [~'1 onto I~1 such that the image of a face of ~ '  is the union of faces in c~. 

The k-skeleton of a cell complex ~, denoted by skelk(~), is the cell complex of 

all faces of ~ of dimension at most k. The boundary complex of a d-polytope P 

is skela_ I(P). 

Let ~" be a face of a cell complexdt'. We define ast(~,~r the antistar of 
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~ in .~ ,  to be the collection of all faces of r  do not contain ~" as a face. 

We define star(~,  ok'), the star of .~" in .//l, to be the collection of all faces of . ~  

containing ~" together with all faces that belong to faces containing ~' .  We define 

l ink(~,  .~) ,  the linked complex of ~ in .///, to be star(~', ~ ' )  c3 ast(~,./k'). 

A graph G is said to be n-connected provided it has at least n + 1 vertices and 

cannot be separated by removing fewer than n vertices. We shall use the theorem 

of Whitney [7] that a graph is n-connected if and only if any two vertices can be 

joined by n independent paths (that is, paths that meet only at their endpoints). 

3. Graph manifolds 

In order to prove our theorems for manifolds we shall construct what we call 

graph manifolds, which can be regarded as a combinatorial generalization of 

pseudo-manifolds. 

A ( -  1)-graph manifold is a graph consisting of one vertex. A O-graph manifold 
is a graph consisting of a single edge and its two vertices. A 1-graph manifold is a 

graph consisting of a simple circuit of at least three edges, its edges and its vertices. 

Inductively, an n-graph manifold, .~r, hereafter abbreviated n-gin, is a col- 

lection, r of k-gm's (0 < k < n - 1), called faces of, /g,  such that the following 

conditions hold. 

(i) I f  ~ ~ ~ then every face of ~- is in cr 

(ii) The non-empty intersection of any two faces ~" and ~ "  of ~ is a face 

of both ~- and ~- ' .  

(iii) .Ar is strongy connected. 

(iv) Each face of ./g belongs to an (n - 1)-face of .Ar 

(v) Each (n - 2)-face of ~ is in exactly two (n - 1)-faces of J r .  

If  (iii) is not satisfied, we call ~ a pseudo-graph manifold. The graph of./g is 

the graph consisting of vertices and edges of ,4~', and will be denoted by f#(.Ar 

The terms vertex, edge, facet and subfacet, star, antistar and link will be used in 

the same way as for cell complexes. Note that a facet of an n-gin is an (n - 1)- 

face, not an n-face. The number n will be called the dimension of vKr 

If  M is a triangulated manifold, pseudo-manifold, or cellular decomposition 

of a manifold, then M can be associated with an n-gm r of the same dimension, 

such that dr' and M are isomorphic, that is, there is a 1-1 function taking faces 

of M onto faces of ~ such that dimension and incidences are preserved. In any 

of  the structures in which we work, we shall say that two faces are incident 

provided one face is a face of the other. 
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LEMMA 1. Let ~ l , ' " ,  ~ ,. be a sequence of distinct facets of an n-gin Jg  

such that . ~  :3 ~ ~, 1 <_ i <_ m - 1 ,  is a subfacet of.//[ and such that each ~ 

contains an ( n - 3 ) - f a c e  F. Then there exists a sequence of distinct facets 

~ l , ' " , ~  . ~ , . + l , ' " , ~ t  = .~1 such that o~, c3o~,+ 1 is a subfacet of ./g for 

1 < i <_ I - 1, and each ~ ,  contains F (such a sequence will be called a strong 

cycle). 

PROOF. Let ~'m-~ C3 "~m = S:m" On ~-m the face F belongs to exactly two 

subfacets of ./K. Let 5:m+ 1 be the other subfacet of .~-m containing F. Let ~m+~ 

be the facet that shares 6a m with ~m. Continuing in this way, we can construct 

facets ~-m+2, ~m+3, "", until we reach a facet ~m+j that has appeared earlier in 

the sequence of ~ i .  I f ~ m + j  = ~1 ,  we are done. Suppose ~'m+~ = ~ i  for i ~ 1. 

Let 6: i and 6:i+ 1 be the two subfacets on ~ that contain F. The facet ~m+j-1  

meets ~ on one of these two subfacets, but either ~ + ~  or ~ _ ~  also meets ~-~ 

on this subfacet which contradicts condition (v) for n-gm's, and the lemma 

is proved. 

LEMMA 2. The antistar of any vertex of an n-gm is strongly connected. 

PROOF. Our proof is by induction on n. It is clear that the theorem is true for 

n < 1. Suppose v is a vertex of an n-gm .//4, n > 1. Let ~1  and ~k  be two facets 

in ast(v) and let fr = {~1, ~-2 ," ' ,  ~k} be a strong chain connecting them. If  the 

chain misses v, we are done. Suppose some facet in the chain contains v. Let ~-s 
be the first such facet and suppose that ~ ,  ~-~+ ~,..., ~ j  all meet v and that ~-j§ 

does not. Let 5ai = ~ i - 1  c3 ~ i  and 6:j+~ = ~ j  r3 ~ j +  ~. By induction ast(v, ~ t )  

for i < l < j is strongly connected. Using this fact, we can get a strong chain 

Y~, "", ~m of ( n -  1)-faces in link(v, de') from Sej to 6:~. For each pair of  

consecutive subfacets 5:~ and 3a~+~ let ~ and ~-h+~ be facets of ../4 containing 

5:n and S:h+ ~ respectively, and not meeting v. The facets ~-, and ~-h+t together 

with either one or two facets of the sequence ~ , . . . ,  ~ ' j  forms a strong sequence 

of facets containing an (n - 3)-face of .//t'. By Lemma 1, they belong to a strong 

cycle. The portion of this strong cycle that misses v will be a strong chain con- 

necting 5: h and 6:h+ i. In this way, we get a strong chain from S~ to 6aj+ i. Thus 

we get a strong chain from ~'i-~ to ~-j+~. By doing the same thing whenever 

we encounter facets of ~f meeting v, we construct a strong chain missing v. 

LrMMA 3. An n-gin has at least n + 2 vertices. 

PROOF. The proof is an easy induction on n and is left to the reader. 
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THEOREM 4. The graph (~(..g) of an n-gin r is (n + 1)-connected. 

PROOF. By Lemma 3, ..g has at least n + 2 vertices. Suppose V is a set of 

vertices separating ~(vg). Let v ~ V, and let ~ 1  and ~k  be facets meeting dif- 

ferent components of the separated graph and missing v. Let ~ = {~-1,... ~'k} 

be a strong chain joining o~1 and ~-k in ast(v,,/g). The set V must separate the 

graph of ~.  If some facet of ~ is separated by V, then by induction V has at 

least n vertices in that facet and thus V has at least n + 1 vertices. If  no facet of 

is separated by V, then some subfacet ~ belonging to two consecutive facets 

of rr will have all of its vertices in V. By Lemma 3, ~ has at least n vertices. Thus 

v has at least n + 1 vertices. 

The theorem is clearly true for n =< 1, thus the induction can be started. 

COROLLARY 5. Thegraph of an n-manifold or an n-pseudo manifold is ( n + l ) -  

connected. 

COROLLARY 6. The graph of an n-polytope is n-connected. 

THEOREM 7. I f  ./g is an n-gin then each vertex belongs to a refinement of Cn+ 2, 

the complete graph on n + 2 vertices, in ~(r 

PROOF. Let v be a vertex of r We form a pseudo (n-1)-gin Jg '  as follows. 

(i) The vertices of ./g' correspond to edges of Jg  that meet v. 

(ii) Two vertices are joined by an edge, if and only if the corresponding edges 

of .~' lie on a 1-face of ..g. 

(iii) Inductively, a collection of k-faces of ./4' determines a (k + 1)-face, if 

and only if the corresponding (k + 1)-faces of.~r all contain v and are the (k+ 1)- 

faces of .At' lying on some (k + 2)-faces meeting v. 

This pseudo gm is called the vertex figure of v, and will be denoted by ~(v). 

(3 b 

d 

e 

f 

Fig. I. Two tetrahedra meeting at a common vertex. 
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We illustrate this with the case where ..g is the boundary of two tetrahedra 

meeting at a common vertex (Fig. 1). The vertices of 3e'(v) are a, b, c, e, f ,  and g. 

The edges are ac, cb, ba, ef, fg, and eg. The maximal strongly-connected com- 

ponents of Y:(v) are the circuits abc and efg. 

Since ~'(v) is clearly a pseudo n-gin, the maximal strongly-connected sub- 

complexes of Y/'(v) are n-gm's. Let ~r be one of the3e subcomplexes. By induction 

(g(M1) contains a refinement of Cn+t, We shall show that corresponding to the 

refinement of C,+ 1 in f#( M 0,  there is a refinement of ~',+ 1 in f#(link(v)). 

Let e be an edge of J/C1 and let ~" be the 2-face of Jr corresponding to e. Let e 1 

and e 2 be the two edges of./Ct' corresponding to the endpoints of  e and let v I and v 2 

be the endpoints of e~ and ez in link(v). In o~ there is a path from el to e 2 that 

misses v, thus this path lies in link(v). For each edge of the refinement of C,+ 1 in 

f~(M~) there is a corresponding path in link(v) and these paths form a refinement 

f~ of  ~ § 1 in link(v). Adding the edges from v to the n-valent vertices of  f~, gives 

us a refinement of ~.+2. 

4. The degree of separability 

The nth degree of total separability of  a graph (#, denoted by s,(fg), is defined 

to be the maximum number of components obtained by removing n vertices 

from fg. Klee's theorem states essentially that if (~ is the graph of a d-polytope 

then s,(fr is at most the maximum number of facets of any d-polytope with n 

vertices. Generalizations of Klee's theorem do not seem to be quite as nice. The 

first two theorems, as we have seen, are purely combinatorial. When we look at 

the degree of separability of the graph of a manifold M, topology now becomes 

important. That is, the degree of separability not only depends on the dimension 

of  M, which we could treat in a purely combinatorial way, but also on the topology 

of M. 

For example, the maximum number of components that the graph of a cellular 

decomposition of a 2-sphere can be divided into by removing 7 vertices is 10 

(this follows from Klee's theorem), yet if we take a triangulation of the torus with 7 

vertices and make a stellar subdivision of each 2-face then we have the graph of  

a 2-manifold that can be divided into 14 components by removing 7 vertices. 

It would be tempting to conjecture that the number of components of a graph 

of  a d-manifold separated by n vertices is at most the maximum number of d-cells 

in any cellular decomposition of that manifold, with n vertices. Unfortunately, 

there may be many values for n for which there is no cellular decomposition of 
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.Ar with n vertices. However if .A' has a cellular decomposition with n vertices 

then it has one for any number of vertices greater than n, thus the conjecture may 

be true for large enough n. We shall prove some weakened forms of this con- 

jecture, some of which we are able to prove only for 2- and 3-dimensional manifolds. 

If  ~ '  is a cellular decomposition of a d-manifold M, and ~ is a (d-1)-cel l  

subcomplex of oK', we define C(T, M) to be the number of strongly-connected 

components of  M ~ ~.  We define C(k, M) to be the maximum of  C(~, M) taken 

over all ( d -  1)-subcomplexes with k vertices, of all cellular decompositions of  M. 

By a d-face of  ~ we shall mean a strongly-connected component of  M ,~ ~. 

THEOREM 8. Let ~ be the graph of a cellular decomposition 5, of a 2- 

manifold M. I f  a set V of v vertices separates ~ then the number of components 

of the separation is at most C(v, M). 

PROOF. Let ffl  be the subgraph of  fg determined by V. If  each component of  

the separation belongs to a different 2-face of ffl  then we are done, so we may 

assume that at least two components belong to the same 2-face, F', of if1. If  this 

is the case then some facet F of ~ contains edges of two different components in 

F ' .  q-his facet must have vertices on F '  for otherwise the two different components 

would be connected by a path along the facet and, in fact, for this reason the facet 

F must have two vertices on F '  that are not consecutive on F. These two vertices 

are not joined in if, for if they were, then any facet of ~ containing that edge 

would meet F in a way that is not allowed in cellular decompositions of M. We 

now add to if '  an edge joining these two vertices, producing a graph if2. We 

continue until we have a graph fin for which each component lies in a separate 

2-face. It is now clear that the conclusion of the theorem is true. 

THEOREM 9. Let M be a triangulated n-pseudo manifold with graph f9 and 

suppose f~ is separated by a set V of v vertices. Then the number of components 

of the separation is at most C(v,M). 

PROOF. Let ~ be the (n - 1)-complex consisting of faces of M whose vertices 

are in V. This is an (n - 1)-complex, for if its dimension were less than n - 1 

then we could separate M by removing a set of  dimension less than n - 1 con- 

tradicting the fact that M is strongly connected. Suppose so:rte n-face F '  of  ~' 

contains more than one component of the separated graph. Let two of the 

components be K 1 and K2 and let {~ r ,  ..., ~-k} be a strong chain of facets joining 

them in F ' .  Let ~ i  be the last facet of the chain meeting K~. The facet ~ i  contains 

only vertices of  K~ and V, for if some other component K2 met ~ ,  then an edge 
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of ~-i would join these components in F' .  Since Fi+ 1 misses K~, we see that 

~'i c3 ~ + 1  has only vertices of V, in other words, ~ c3 ~,+1 is a face o f T .  This 

contradicts the fact that {~-~..., ~-k} lies in F' .  

LEMMA 10. Any cellular decomposition ~ of a 3-sphere can be triangulated 

without introducing any new vertices. 

PROOF. Let v be a vertex of <r In <r we replace star(v) by the set of 3-cells of 

the form v V~- (the join of v and ~-) where ~" is a face of link(v). We do this to 

vertices of c~ until each facet is pyramidal at each of its vertices. (A facet F is said 

to be pyramidal at v if it is of the form v V~- for some face ~ of F). An easy 

proof shows that if a facet is pyramidal at each vertex, it is a simplex. 

COROLLARY 11. The maximum number of facets of any cellular decomposition 

of a 3-sphere with a given number of vertices is at most the maximum number 

of facets of any triangulation of the 3-sphere with the same number of vertices. 

THEOREM 12. I f  cg is a cellular decomposition of a 3-manifold M and the 

graph of Cg is separated by a set V of v vertices then the number of components 

of the separation is less than or equal to the maximum number of facets of any 

cellular decomposition of the 3-sphere with v vertices. 

PROOF. It follows from a theorem of Moise [5] that link(x) is a 2-sphere for 

any vertex x in <r By a theorem of Steinitz [6] any such 2-sphere is isomorphic 

to the boundary complex of a 3-polytope. If  x e V then by Klee's theorem the 

maximum number of components of the separated graph meeting link(x) is less 

than or equal to the maximum number of facets of any 3-polytope with v - 1 

vertices. Thus the maximum number of such components is 2 (v-  1 ) -  4 = 2 v -  6 

(see [3, Ch. 10]). If we sum up the number of components meeting the linked 

complexes of the vertices in V the sum is at most v(2v - 6). Since the graph of <r 

is 4-connected, each component lies in the linked complex of at least 4 vertices. 

Thus the total number of components is at most (v 2 - 3v)/2. This, however, is 

the maximum number of facets of any triangulated 3-sphere with v vertices 

[3, Ch. 10]. From Corollary 11, we see that this is the maximum number of 

facets of any cellular decomposition of a 3-sphere with v vertices. 

5. The lower bound theorem for simple n-gin's 

In this section we supply the details needed to prove the Lower Bound theorem 

for triangulated d-manifolds. The reader should read [1] in order to understand 
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this section, as we do not wish to repeat the original proof of the Lower Bound 

theorem here. 

In [1] we used a theorem of Sallee which we shall generalize here. We define a 

strong n-gm cell complex ~ to be a collection ofn-gm's such that given any two 

n-gm's in ~ there is a strong chain of n-gin's joining them. 

THEOREM 13. The graph of a strong n-gm complex cC is (n + 1)-connected. 

PROOF. ~ has at least n + 2 vertices by Lemma 3. Suppose a set V of vertices 

separates fa(cg). We choose a strong chain C = ( ~ l , ' " ,  ~'m} joining two vertices 

vt and v2 in different components Kt  and K2 of the separated graph. Let ~ be 

the last facet of C containing vertices of K1. If  V separates #ri, we are done by 

Theorem 4. If  V does not separate ~'i, then ~'i n ~'~+ ~ contains only separating 

vertices and by Lemma 3 we are done. 

We define an n-gm..r to be simple provided each k-face belongs to exactly 

d - k + 1 facets o f . / / .  The proof of the Lower Bound theorem may now be done 

for simple n-gm's the same way it is done for simple polytopes in [1"], using Theo- 

rem 13 instead of Sallee's theorem. 

We will get the Lower Bound theorem for any triangulated manifold M by 

constructing a dual M* of  M, that is, a simple n-gin. To do so, we shall need two 

lemmas about triangulated manifolds. 

LEMMA 14. I f  ~J is a face of a d-manifold M then star(~-,M) is strongly 

connected. 

PROOF. If  star(~-, M) is not strongly connected then it can be separated by a 

subset of skeld_ 2 star(~', M). If  p is a point in the relative interior of ~" then all 

small neighborhoods of p are separated by skeld_2 star(~',M). But the small 

neighborhoods of points in M are d-cells and cannot be separated by sets of 

dimension d - 2. 

LEMMA 15. I f  F 1 and F d are two k-faces of a d-manifold M (for 2 < k < d -  1) 

that contain a ( k -  1)-face H of M then there is a strong sequence of (k + l). 

faces of M containing H and joining F l and F 2. 

PROOF. The proof follows easily from Lemma 14 and induction on the dimen- 

sion. We leave it to the reader to supply the details. 

I f  ../r is an n-gin we define the semi dual, ,.fg* of ~ as follows. 

(i) Vertices of ~ '*  correspond to facets of Jr'. 
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(ii) Two vertices are joined by an edge if and only if the corresponding facets 

meet on a subfacet. 

(iii) Inductively, a set S of/-faces (for - 1 - l < k) of . g *  form a (k + 1)-face 

provided the (n - / ) - faces  o f . g  corresponding to the faces in S consist of all of  

the (n - / ) - f aces  o f . / / t h a t  contain some (n - k - 1)-face o f . g .  

With this definition the semi dual of an n-ore may or may not be an n-ore. We 

can show, however, that i f . g  is isomorphic to a triangulated manifold then . g *  

is a simple n-gin. 

THEOREM 16. If.~r is isomorphic to a trianoulated manifold M, then .g*  is 

an n-ore. 

PROOF. First we shall show that each face o f . g *  is strongly connected. 

Let F be a k-face o f . g *  and let H1 and H~ be two (k - 1)-faces of F. Cor- 

responding to H1, Hz and F are (d - k + 1)-faces ~ '1 and ~' l ,  and a (d -k ) - face  

~" respectively. Let H~,.,.,(~, be a strong chain of (d - k + 2)-faces o f~{  joining 

~rt~ 1 and ~' l ,  and containing ~' .  Corresponding to each (~i is a (k - 2)-face G i of 

.~/'*. Corresponding to each (d - k + 1)-face Hi r3Hi+a is a (k - 1)-face H i of 

J l *  that meets H~+ 1 on Gv This sequence H 1, ...,H~ is the desired chain. 

Next we show that in any k-face F of r162 each ( k -  2)-face H belongs to 

exactly two (k - 1)-faces. Corresponding to F and H are faces ~" and ~ i n . g  of 

dimensions (d - k) and (d - k + 2) respectively, with ~ a face of ~ .  In ~r there 

are exactly two (d - k + 1)-faces, H 1 and (~2, meeting on ~' .  Corresponding to 

~1 and (~2 are exactly two faces G 1 and G 2 i n .~*  with H belonging to G~ and G 2. 

We now show that the nonempty intersection of any two faces o f . ~ *  is a face 

of both. Let F k and F j be a k-face and a j-face respectively with F k r~ F j ~ ~ .  

Corresponding to F k in ~ '  is the set S 1 of all faces containing some (d - k)-face 

~a-k .  Corresponding to F J is the set S 2 of all faces containing a ( d -  j)-face 

r Corresponding to F k r3 F J is the set of all faces of r containing both 

,~d-S and ~ a -  k. i f F  k N F j ~ (~ then S a n  S 2 ~;~ ~ .  Thus some face of  JC'contains 

~ d - ~  and ~-d-k. Let ~- be the face of smallest dimension containing ~-d-j and 

~-d-~. Then all other faces containing ~ d - j  and ~ - k  will contain ~ .  Thus 

F k ~ F j is the face F of, g *  corresponding to ~' .  We see that F is a face of  F k and 

o f  F k and U because ~" contains o~d-~ and ~d-~.  

NOW we observe t h a t . g *  is simple. I f  F is a k-face o f , / /*  there corresponds to 

it a (d - k)-face ~ o f . g ,  Since all faces o f . g  are simplices we see that ~ contains 

d - k + 1 vertices. Thus F belongs to exactly d - k + 1 facets. 
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THEOREM 17. I f  M is a triangulated d-manifold with v vertices and f facets 

then f >= do - (d + 2) ( d - l ) .  

PROOF. This follows from the Lower Bound theorem for simple n-gin's and 

from Theorem 16. 

REMARK. Theorem 4 was proved independently by D. Walkup (private 

communication). 

REFERENCES 

I. D. Barnette, The minimum number of vertices of a simple d-polytope, Israel J. Math. 
10 (1971), 121-125. 

2. D. Barnette and G. Wegner, A 3-sphere that is not 4-polyhedral, Studia Sci. Math. Hungar. 
6 (1971), 341-346. 

3. B. Grtinbaum, Convex Polytopes, Wiley, New York, 1967. 
4. V. Klee, A property of polyhedral graphs, J. Math. Mech. 13 (1964), 1039-1042. 
5. E. Moise, Affine structures in 3-manifolds, V (The triangulation theorem and hauptvermu- 

tung), Ann. of Math. 56 (1952), 96-114. 
6. E. Steinitz and H, Radamacher, Vorlesungen iiber die Theorie der Polyeder, Bed'n, 1934. 
7. H. Whitney, Congurent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 

150-164. 

UNIVERSITY OF CALIFORNIA, DAVIS 
DAVIS, CALIFORNIA, U. S. A. 


