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ABSTRACT

Two basic theorems about the graphs of convex polytopes are that the graph of
a d-polytope is d-connected and that it contains a refinement of the complete
graph on d + 1 vertices. We obtain generalizations of these theorems, and
others, for manifolds. We also supply some details for a proof of the lower
bound inequality for manifolds.

1. Introduction

The advent of linear programming has brought about a renewal of interest in
the combinatorial structure of convex polytopes. In the past ten years many new
theorems have been proved for these polytopes. It is interesting that many of them
are also true for more general structures such as triangulated manifolds and
pseudo-manifolds.

In this paper we shall generalize the following theorems to manifolds and
pseudo-manifolds.

(i) The graph of a d-polytope is d-connected [3, p. 213].

(ii) Each vertex of the graph of a d-polytope is contained in a refinement of
C;+1, the complete graph on d + 1 vertices [3, p. 200].

(iii) (Klee [4].) If a set of n vertices separates the graph of a d-polytope, then
the number of components is 1 (if n £d — 1), is 2 (if n = d), and is less than or
equal to the maximum number of facets of any d-polytope with n vertices for
nzd+ 1.

As an application of one of our theorems, we shall prove the Lower Bound
theorem for manifolds which states:
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If M is a d-manifold with v vertices, then M has at least dv — (d +2) (d — 1)
facets.

This theorem was proved for polytopes in [1], where we mention that it can
be proved for manifolds although no proof is given.

2. Definitions

A d-cell complex is a collection € of closed k-cells (called faces of €) where
— 1<k £d such that

(i) the boundary of each k-cell is a (k — 1) cell complex.

(i) the intersection of any two faces #; and &, is a face of both &, and #,
(possibly the empty face).

(iif) each face of € is a face of a d-cell of %.

A simplicial d-cell complex is one in which the facial structure of each d-cell
is isomorphic to the facial structure of the d-simplex.

A d-manifold is a compact metric space that is locally homeomorphic to the
d-cell. A triangulated d-manifold is one that is the union of the faces of some
simplicial d-cell complex.

A d-pseudo manifold #, is a simplicial d-complex that satisfies the following
conditions.

(i) Each (d — 1) face belongs to exactly two d-faces.

(i)  is strongly connected, that is, given any two d-simplices S, and S, in /#
there is a sequence Sy, Sy, -, S, of simplices such that S; and S,_, intersect on a
(d — 1) simplex. (Such a sequence of facets will be called a strong chain.)

Every triangulated manifold is a pseudo-manifold but the converse is not true.
A cellular decomposition of a d-manifold is a d-manifold that is the union of the
faces of a d-cell complex.

A vertex of a cell complex is a face of dimension 0, an edge is a 1-dimensional
face. A facet of a d-cell complex is a d-face and a subfacet is a (d — 1)-face. The
graph of a d-cell complex is the linear graph formed by its vertices and edges.

The body of a cell complex €, denoted by ]% I is the union of its faces of €.
A cell complex € is a refinement of a cell complex %" if there is a homeomorphism
of l € ’l onto I(K l such that the image of a face of €’ is the union of faces in %.

The k-skeleton of a cell complex €, denoted by skel (¥), is the cell complex of
all faces of € of dimension at most k. The boundary complex of a d-polytope P
is skel;_,(P).

Let & be a face of a cell complex.#. We define ast(ZF,.#), the antistar of
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F in A, to be the collection of all faces of # that do not contain & as a face.
We define star(#,.#), the star of & in ., to be the collection of all faces of 4
containing & together with all faces that belong to faces containing &. We define
link(#, ), the linked complex of & in M, to be star(F, M) N ast(F, ).

A graph G is said to be n-connected provided it has at least n + 1 vertices and
cannot be separated by removing fewer than n vertices. We shall use the theorem
of Whitney [7] that a graph is n-connected if and only if any two vertices can be
joined by n independent paths (that is, paths that meet only at their endpoints).

3. Graph manifolds

In order to prove our theorems for manifolds we shall construct what we call
graph manifolds, which can be regarded as a combinatorial generalization of
pseudo-manifolds.

A (— 1)-graph manifold is a graph consisting of one vertex. A 0-graph manifold
is a graph consisting of a single edge and its two vertices. A 1-graph manifold is a
graph consisting of a simple circuit of at least three edges, its edges and its vertices.

Inductively, an n-graph manifold, #, hereafter abbreviated n-gm, is a col-
lection, €, of k-gm’s (0 £ k < n — 1), called faces of .#, such that the following
conditions hold.

(i) If # €% then every face of # is in €.

(ii) The non-empty intersection of any two faces & and F’ of ./ is a face
of both & and F'.

(iii) « is strongy connected.

(iv) Each face of .# belongs to an (n — 1)-face of A.

(v) Each (n — 2)-face of A is in exactly two (n — 1)-faces of .

If (iii) is not satisfied, we call # a pseudo-graph manifold. The graph of A is
the graph consisting of vertices and edges of ., and will be denoted by ¥(.#).
The terms vertex, edge, facet and subfacet, star, antistar and link will be used in
the same way as for cell complexes. Note that a facet of an n-gm is an (n — 1)-
face, not an n-face. The number n will be called the dimension of .

If M is a triangulated manifold, pseudo-manifold. or cellular decomposition
of a manifold, then M can be associated with an n-gm # of the same dimension,
such that .# and M are isomorphic, that is, there is a 1-1 function taking faces
of M onto faces of .# such that dimension and incidences are preservéd. In any
of the structures in which we work, we shall say that two faces are incident
provided one face is a face of the other.
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LeMMA 1. Let .-, %, be a sequence of distinct facets of an n-gm M
such that F;NF .y, 1 Si<m—1, is a subfacet of # and such that each F,
contains an (n — 3)-face F. Then there exists a sequence of distinct facets
F s F s Fnitr s Fy=F such that F;0NF .y, is a subfacet of A for
12ig -1, and each &, contains F (such a sequence will be called a strong
cycle).

Proof. Let #,. . NZF, =S, On &, the face F belongs to exactly two
subfacets of /. Let &, be the other subfacet of %, containing F. Let %, ,
be the facet that shares &%, with & ,. Continuing in this way, we can construct
facets F .42, Fm+3, '+, until we reach a facet # ., ; that has appeared earlier in
the sequence of &#,. If #,,,; = &, we are done. Suppose &, ; = F,fori # 1.
Let &; and &,,, be the two subfacets on &, that contain F. The facet #,,,;_,
meets &; on one of these two subfacets, but either #;,, or &;_; also meets &,
on this subfacet which contradicts condition (v) for n-gm’s, and the lemma

is proved.

LEMMA 2. The antistar of any vertex of an n-gm is strongly connected,

PrOOF. Our proof is by induction on n. It is clear that the theorem is true for
n < 1. Suppose v is a vertex of an n-gm 4, n>1. Let # and &, be two facets
in ast(v) and let € = {#,, &,,---, F,} be a strong chain connecting them. If the
chain misses v, we are done. Suppose some facet in the chain contains v. Let % ;
be the first such facet and suppose that #;, #;, 4, -, % ; all meet v and that % j+1
does not. Let ;= &,  NF,and &, = F; N F ;.. By induction ast(v, F,)
for i<Igjis strongly connected. Using this fact, we can get a strong chain
&1, S m of (n— 1)-faces in link(v, #) from &; to &;. For each pair of
consecutive subfacets &, and &, let &, and &, be facets of .# containing
& and F . respectively, and not meeting v. The facets &, and &, together
with either one or two facets of the sequence &, -+, & ; forms a strong sequence
of facets containing an (n — 3)-face of .#. By Lemma 1, they belong to a strong
cycle. The portion of this strong cycle that misses v will be a strong chain con-
necting &, and &, ;. In this way, we get a strong chain from &, to %, j+1- Thus
we get a strong chain from #;_; to &, . By doing the same thing whenever
we encounter facets of € meetmg v, we construct a strong chain missing v.

LEMMA 3. An n-gm has at least n + 2 vertices.

Proor. The proof is an easy induction on n and is left to the reader.
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THEOREM 4. The graph %(#) of an n-gm A is (n + 1)-connected.

Proor. By Lemma 3, # has at least n + 2 vertices. Suppose V is a set of
vertices separating %(.#). Let veV, and let #, and &, be facets meeting dif-
ferent components of the separated graph and missing v. Let € = {F, - F,}
be a strong chain joining &, and &, in ast(v, #). The set V must separate the
graph of . If some facet of ¥ is separated by V, then by induction V has at
least n vertices in that facet and thus V has at least n + 1 vertices. If no facet of
% is separated by V, then some subfacet & belonging to two consecutive facets
of € will have all of its vertices in V. By Lemma 3, & has at least n vertices. Thus

v has at least n + 1 vertices.
The theorem is clearly true for n £ 1, thus the induction can be started.

COROLLARY 5. The graph of an n-manifold or an n-pseudo manifold is (n+1)-

connected.
COROLLARY 6. The graph of an n-polytope is n-connected.

THeOREM 7. If A is an n-gm then each vertex belongs to a refinement of C,, 5,
the complete graph on n + 2 vertices, in 4(#).

PrROOF. Let v be a vertex of 4. We form a pseudo (n—1)-gm 4’ as follows.

(i) The vertices of ' correspond to edges of .# that meet v.

(i) Two vertices are joined by an edge, if and only if the corresponding edges
of # lie on a 1-face of /.

(iii) Inductively, a collection of k-faces of .#’ determines a (k + 1)-face, if
and only if the corresponding (k + 1)-faces of .# all contain v and are the (k+1)-
faces of  lying on some (k + 2)-faces meeting v.

This pseudo gm is called the vertex figure of v, and will be denoted by ¥7(v).

Fig. 1. Two tetrahedra meeting at a common vertex.
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We illustrate this with the case where .# is the boundary of two tetrahedra
meeting at a common vertex (Fig. 1). The vertices of ¥"(v) are a, b, ¢, e, f, and g,
The edges are ac, cb, ba, ¢f, fg, and eg. The maximal strongly-connected com-
ponents of #"(v) are the circuits abc and efy.

Since #"(v) is clearly a pseudo n-gm, the maximal strongly-connected sub-
complexes of #(v) are n-gm’s. Let 4, be one of these subcomplexes. By induction
%( M,) contains a refinement of C,,;, We shall show that corresponding to the
refinement of C,,, in %( M,), there is a refinement of €, ., in %(link(v)).

Let e be an edge of 4, and let # be the 2-face of .# corresponding to e. Let e,
and e, be the two edges of .# corresponding to the endpoints of e and let v, and v,
be the endpoints of e, and e, in link(v). In & there is a path from e, to e, that
misses v, thus this path lies in link(v). For each edge of the refinement of C,,; in
%( M,) there is a corresponding path in link(v) and these paths form a refinement
% of €, in link(v). Adding the edges from v to the n-valent vertices of &, gives
us a refinement of €, ,.

4. The degree of separability

The nth degree of total separability of a graph %, denoted by s,(%), is defined
to be the maximum number of components obtained by removing n vertices
from %. Klee's theorem states essentially that if ¢ is the graph of a d-polytope
then s,(%) is at most the maximum number of facets of any d-polytope with n
vertices. Generalizations of Klee’s theorem do not seem to be quite as nice. The
first two theorems, as we have seen, are purely combinatorial. When we look at
the degree of separability of the graph of a manifold M, topology now becomes
important. That is, the degree of separability not only depends on the dimension
of M, which we could treat in a purely combinatorial way, but also on the topology
of M.

For example, the maximum number of components that the graph of a cellular
decomposition of a 2-sphere can be divided into by removing 7 vertices is 10
(this follows from Klee’s theorem), yet if we take a triangulation of the torus with 7
vertices and make a stellar subdivision of each 2-face then we have the graph of
a 2-manifold that can be divided into 14 components by removing 7 vertices.

It would be tempting to conjecture that the number of components of a graph
of a d-manifold separated by n vertices is at most the maximum number of d-cells
in any cellular decomposition of that manifold, with n vertices. Unfortunately,

there may be many values for n for which there is no cellular decomposition of
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A with »n vertices, However if . has a cellular decomposition with »n vertices
then it has one for any number of vertices greater than n, thus the conjecture may
be true for large enough n. We shall prove some weakened forms of this con-
jecture, some of which we are able to prove only for 2- and 3-dimensional manifolds.

If €’ is a cellular decomposition of a d-manifold M, and % is a (d—1)-cell
subcomplex of %', we define C(¥, M) to be the number of strongly-connected
components of M ~ €. We define C(k, M) to be the maximum of C(¥, M) taken
over all (d —1)-subcomplexes with k vertices, of all cellular decompositions of M.
By a d-face of € we shall mean a strongly-connected component of M ~ %.

THEOREM 8. Let & be the graph of a cellular decomposition €, of a 2-
manifold M. If a set V of v vertices separates 4 then the number of components
of the separation is at most C(v, M).

ProOOF. Let ¥, be the subgraph of ¢ determined by V. If cach component of
the separation belongs to a different 2-face of ¢, then we are done, so we may
assume that at least two components belong to the same 2-face, F’, of ¢,. If this
is the case then some facet F of € contains edges of two different components in
F’. This facet must have vertices on F’ for otherwise the two different components
would be connected by a path along the facet and, in fact, for this reason the facet
F must have two vertices on F’ that are not consecutive on F. These two vertices
are not joined in ¢, for if they were, then any facet of € containing that edge
would meet F in a way that is not allowed in cellular decompositions of M. We
now add to ¢’ an edge joining these two vertices, producing a graph ¢,. We
continue until we have a graph ¢, for which each component lies in a separate
2-face. It is now clear that the conclusion of the theorem is true.

THEOREM 9. Let M be a triangulated n-pseudo manifold with graph ¢ and
suppose ¥ is separated by a set V of v vertices. Then the number of components
of the separation is at most C(v, M).

ProoF. Let % be the (n — 1)-complex consisting of faces of M whose vertices
are in V. This is an (n — 1)-complex, for if its dimension were less than n — 1
then we could separate M by removing a set of dimension less than » — 1 con-
tradicting the fact that M is strongly connected. Suppose somz n-face F' of €
contains more than one component of the separated graph. Let two of the
components be K; and K, and let {#,, ---, #,} be a strong chain of facets joining
them in F'. Let &, be the last facet of the chain meeting K. The facet &, contains
only vertices of K, and ¥, for if some other component K, met &,, then an edge
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of &, would join these components in F’. Since F;,, misses K;, we see that
F N F,, has only vertices of V, in other words, #; N F;,, is a face of €. This
contradicts the fact that {#---,#,} lies in F'.

LemMA 10. Any cellular decomposition € of a 3-sphere can be triangulated
without introducing any new vertices.

ProOF. Let v be a vertex of %. In € we replace star(v) by the set of 3-cells of
the form v \/& (the join of v and &) where & is a face of link(v). We do this to
vertices of % until each facet is pyramidal at each of its vertices. (A facet F is said
to be pyramidal at v if it is of the form v V& for some face &# of F). An easy
proof shows that if a facet is pyramidal at each vertex, it is a simplex.

COROLLARY 11. The maximum number of facets of any cellular decomposition
of a 3-sphere with a given number of vertices is at most the maximum number
of facets of any triangulation of the 3-sphere with the same number of vertices.

THEOREM 12. If € is a cellular decomposition of a 3-manifold M and the
graph of € is separated by a set V of v vertices then the number of components
of the separation is less than or equal to the maximum number of facets of any
cellular decomposition of the 3-sphere with v vertices.

Proor. It follows from a theorem of Moise [5] that link(x) is a 2-sphere for
any vertex x in €. By a theorem of Steinitz [6] any such 2-sphere is isomorphic
to the boundary complex of a 3-polytope. If x e V then by Klee’s theorem the
maximum number of components of the separated graph meeting link(x) is less
than or equal to the maximum number of facets of any 3-polytope with v — 1
vertices. Thus the maximum number of such components is 2(v—1)—4 = 2v—6
(see [3, Ch. 10]). If we sum up the number of components meeting the linked
complexes of the vertices in V' the sum is at most ®(2v — 6). Since the graph of €
is 4-connected, each component lies in the linked complex of at least 4 vertices.
Thus the total number of components is at most (v?> — 3v) /2. This, however, is
the maximum number of facets of any triangulated 3-sphere with » vertices
[3, Ch. 10]. From Corollary 11, we see that this is the maximum number of
facets of any cellular decomposition of a 3-sphere with v vertices.

5. The lower bound theorem for simple n-gm’s

In this section we supply the details needed to prove the Lower Bound theorem
for triangulated d-manifolds. The reader should read [1] in order to understand
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this section, as we do not wish to repeat the original proof of the Lower Bound
theorem here.

In [1] we used a theorem of Sallee which we shall generalize here. We define a
strong n-gm cell complex € to be a collection of n-gm’s such that given any two
n-gm’s in € there is a strong chain of n-gm’s joining them,

THEOREM 13. The graph of a strong n-gm complex € is (n + 1)-connected.

PROOF. ¥ has at least n + 2 vertices by Lemma 3. Suppose a set V of vertices
separates %(%). We choose a strong chain C = {#,--+, #,,} joining two vertices
v, and v, in different components K; and K, of the separated graph. Let & be
the last facet of C containing vertices of K. If ¥V separates #;, we are done by
Theorem 4. If V does not separate &, then &; N %, contains only separating
vertices and by Lemma 3 we are done.

We define an n-gm# to be simple provided each k-face belongs to exactly
d — k + 1 facets of 4. The proof of the Lower Bound theorem may now be done
for simple n-gm’s the same way it is done for simple polytopes in [1], using Theo-
rem 13 instead of Sallee’s theorem.

We will get the Lower Bound theorem for any triangulated manifold M by
constructing a dual M* of M, that is, a simple n-gm. To do so, we shall need two
lemmas about triangulated manifolds.

Lemma 14, If & is a face of a d-manifold M then star(#, M) is strongly

connected.

Proor. If star(#, M) is not strongly connected then it can be separated by a
subset of skel,_, star(#, M). If p is a point in the relative interior of & then all
small neighborhoods of p are separated by skel,., star(#, M), But the small
neighborhoods of points in M are d-cells and cannot be separated by sets of
dimension d — 2.

LemMA 15. IfF, and F,are two k-faces of a d-manifold M (for2 <k <d—1)
that contain a (k — 1)-face H of M then there is a strong sequence of (k-+1)-
faces of M containing H and joining F| and F,,.

PRrROOF. The proof follows easily from Lemma 14 and induction on the dimen-
sion. We leave it to the reader to supply the details.

If A is an n-gm we define the semi dual, #* of M as follows.

(i) Vertices of .#* correspond to facets of .#.
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(ii) Two vertices are joined by an edge if and only if the corresponding facets
meet on a subfacet.

(iii) Inductively, a set S of I-faces (for — 1 £ [ < k) of A* form a (k + 1)-face
provided the (n — I)-faces of # corresponding to the faces in S consist of all of
the (n — I)-faces of .# that contain some (n — k — 1)-face of /%

With this definition the semi dual of an n-gm may or may not be an n-gm. We
can show, however, that if .# is isomorphic to a triangulated manifold then .#*

is a simple n-gm.
THEOREM 16. If A is isomorphic to a triangulated manifold M, then M#* is

an n-gm.

ProoF. First we shall show that each face of #£* is strongly connected.

Let F be a k-face of #* and let H; and H, be two (k — 1)-faces of F. Cor-
responding to H,, H, and F are (d ~ k + 1)-faces 5#; and 5, and a (d —k)-face
F respectively. Let &, ---,%, be a strong chain of (d — k + 2)-faces of # joining
', and #,, and containing &. Corresponding to each %, is a (k — 2)-face G; of
A*, Corresponding to each (d — k + 1)-face ¥, NY, ., is a (k — 1)-face H; of
M* that meets H,,, on G;. This sequence H,,---, H, is the desired chain.

Next we show that in any k-face F of #*, each (k — 2)-face H belongs to
exactly two (k — 1)-faces. Corresponding to F and H are faces # and 5 in .# of
dimensions (d — k) and (d — k + 2) respectively, with & a face of 2. In # there
are exactly two (d — k + I)-faces, %, and %,, meeting on #. Corresponding to
%, and ¥, are exactly two faces G, and G, in #* with H belonging to G, and G,.

We now show that the nonempty intersection of any two faces of #* is a face
of both. Let F* and F/ be a k-face and a j-face respectively with F* N F/ % (¥,
Corresponding to F* in .# is the set S; of all faces containing some (d — k)-face
F %% Corresponding to F’ is the set S, of all faces containing a (d — j)-face
F%7J. Corresponding to F* N F/ is the set of all faces of .# containing both
Fiiand FUELIFFFNF/ % Pthen S, N S, # . Thus some face of .4 contains
F4 {and F9* Let & be the face of smallest dimension containing %%~/ and
F%* Then all other faces containing #% ™/ and #° * will contain . Thus
F* N F/ is the face F of #* corresponding to %. We see that F is a face of F* and
of F* and F/ because & contains #¢ *and #¢7.

Now we observe that #* is simple. If F is a k-face of #* there corresponds to
ita (d — k)-face & of . Since all faces of # are simplices we see that & contains
d — k + 1 vertices. Thus F belongs to exactly d — k + 1 facets.
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THEOREM 17. If M is a triangulated d-manifold with v vertices and f facets
then f=dv—(d+2) (d—-1)

Proor. This follows from the Lower Bound theorem for simple n-gm’s and
from Theorem 16.

REMARK, Theorem 4 was proved independently by D. Walkup (private
communication).

REFERENCES

1. D. Barnette, The minimum number of vertices of a simple d-polytope, Israel J. Math.
10 (1971), 121-125.

2. D. Barnette and G. Wegner, A 3-sphere that is not 4-polyhedral, Studia Sci. Math. Hungar.
6 (1971), 341-346.

3. B. Griinbaum, Convex Polytopes, Wiley, New York, 1967.

4. V. Klee, A property of polyhedral graphs, J. Math, Mech. 13 (1964), 1039-1042.

5. E. Moise, Affine structures in 3-manifolds, V (The triangulation theorem and hauptvermu-
tung), Ann. of Math. 56 (1952), 96-114.

6. E. Steinitz and H. Radamacher, Vorlesungen iiber die Theorie der Polyeder, Berl'n, 1934.

7. H. Whitney, Congurent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932),
150-164.

UNIVERSITY OF CALIFORNIA, DAvIS
Davis, CALIFORNIA, U. S. A.



